Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 977157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268228

RESUMO

Increased levels of 17-ß estradiol (E2) due to pregnancy in young women or to hormonal replacement therapy in postmenopausal women have long been associated with an increased risk of yeast infections. Nevertheless, the effect underlying the role of E2 in Candida albicans infections is not well understood. To address this issue, functional, transcriptomic, and metabolomic analyses were performed on C. albicans cells subjected to temperature and serum induction in the presence or absence of E2. Increased filament formation was observed in E2 treated cells. Surprisingly, cells treated with a combination of E2 and serum showed decreased filament formation. Furthermore, the transcriptomic analysis revealed that serum and E2 treatment is associated with downregulated expression of genes involved in filamentation, including HWP1, ECE1, IHD1, MEP1, SOD5, and ALS3, in comparison with cells treated with serum or estrogen alone. Moreover, glucose transporter genes HGT20 and GCV2 were downregulated in cells receiving both serum and E2. Functional pathway enrichment analysis of the differentially expressed genes (DEGs) suggested major involvement of E2 signaling in several metabolic pathways and the biosynthesis of secondary metabolites. The metabolomic analysis determined differential secretion of 36 metabolites based on the different treatments' conditions, including structural carbohydrates and fatty acids important for hyphal cell wall formation such as arabinonic acid, organicsugar acids, oleic acid, octadecanoic acid, 2-keto-D-gluconic acid, palmitic acid, and steriacstearic acid with an intriguing negative correlation between D-turanose and ergosterol under E2 treatment. In conclusion, these findings suggest that E2 signaling impacts the expression of several genes and the secretion of several metabolites that help regulate C. albicans morphogenesis and virulence.


Assuntos
Candida albicans , Hifas , Feminino , Humanos , Parede Celular/metabolismo , Ergosterol/metabolismo , Ácidos Graxos/metabolismo , Estrogênios/farmacologia , Polissacarídeos/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/farmacologia , Carboidratos , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Ácidos Oleicos/metabolismo , Ácidos Oleicos/farmacologia , Regulação Fúngica da Expressão Gênica
2.
Clin Transl Oncol ; 24(11): 2064-2073, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35781781

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer deaths in men. Unfortunately, a very limited number of drugs are available for the relapsed and advanced stages of PCa, adding only a few months to survival; therefore, it is vital to develop new drugs. 5´ AMP-activated protein kinase (AMPK) is a master regulator of cell metabolism. It plays a significant role in the metabolism of PCa; hence, it can serve well as a treatment option for the advanced stages of PCa. However, whether this pathway contributes to cancer cell survival or death remains unknown. The present study reviews the possible pathways by which AMPK plays role in the advanced stages of PCa, drug resistance, and metastasis: (1) AMPK has a contradictory role in promoting glycolysis and the Warburg effect which are correlated with cancer stem cells (CSCs) survival and advanced PCa. It exerts its effect by interacting with hypoxia-induced factor 1 (HIF1) α, pyruvate kinase 2 (PKM2), glucose transporter (GLUT) 1 and pyruvate dehydrogenase complex (PDHC), which are key regulators of glycolysis; however, whether it promotes or discourage glycolysis is not conclusive. It can also exert an anti-CSC effect by negative regulation of NANOG and epithelial-mesenchymal transition (EMT) transcription factors, which are the major drivers of CSC maintenance; (2) the regulatory effect of AMPK on autophagy is also noticeable. Androgen receptors' expression increases AMPK activation through Calcium/calmodulin-dependent protein kinase 2 (CaMKK2) and induces autophagy. In addition, AMPK itself increases autophagy by downregulating the mammalian target of rapamycin complex (mTORC). However, whether increased autophagy inhibits or promotes cell death and drug resistance is contradictory. This study reveals that there are numerous pathways other than cell metabolism by which AMPK exerts its effects in the advanced stages of PCa, making it a priceless treatment target. Finally, we mention some drugs developed to treat the advanced stages of PCa by acting on AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias da Próstata , Autofagia , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/uso terapêutico , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/farmacologia , Complexo Piruvato Desidrogenase/uso terapêutico , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , Piruvato Quinase/uso terapêutico , Receptores Androgênicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
3.
J Biochem Mol Toxicol ; 36(9): e23125, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35702883

RESUMO

Repaglinide (RPG) is an oral insulin secretagogue used in the treatment of diabetes. In this study, a new RPG analog was synthesized. Its antidiabetic and neuroprotective effects on dorsal root ganglions (DRG) in streptozotocin (STZ)-induced diabetic rats were examined compared to RPG. To assess the effects of 2-methoxy-4-(2-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)amino)-2-oxoethoxy)benzoic acid (OXR), the impact of OXR on oxidative stress biomarkers, motor function, and the expression of the glutamate dehydrogenase 1 (GLUD1), SLC2A2/glucose transporter 2 (GLUT2), and glucokinase (GCK) genes in STZ-induced diabetic rats were assessed. DRGs were examined histologically using hemotoxylin and eosin staining. Molecular docking was used to investigate the interactions between OXR and the binding site of RPG, the ATP-sensitive potassium (KATP) channel. Following 5 weeks of treatment, OXR significantly increased the level of total antioxidant power, decreased reactive oxygen species, and lipid peroxidation in the DRGs of diabetic rats. OXR restored STZ-induced pathophysiological damages in DRG tissues. Administration of OXR improved motor function of rats with diabetic neuropathy. Administration of 0.5 mg/kg OXR reduced blood glucose while promoting insulin, mainly through upregulation of messenger RNA expression of GLUD1, GLUT2, and GCK in the pancreas. Molecular docking revealed a favorable binding mode of OXR to the KATP channel. In conclusion, OXR has neuroprotective effects in diabetic rats by lowering oxidative stress, lowering blood glucose, and stimulating insulin secretion. We report that 0.5 mg/kg OXR administration was the most effective concentration of the compound in this study. OXR may be a promising target for further research on neuroprotective antidiabetic molecules.


Assuntos
Diabetes Mellitus Experimental , Fármacos Neuroprotetores , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Benzoico/farmacologia , Biomarcadores/metabolismo , Glicemia/metabolismo , Carbamatos , Diabetes Mellitus Experimental/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Glucoquinase/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/farmacologia , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/farmacologia , Hematoxilina/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina , Canais KATP/metabolismo , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Piperidinas , Potássio/metabolismo , Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Secretagogos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA